Internal dynamics and activated processes in soft-glassy materials.
نویسندگان
چکیده
Plastic rearrangements play a crucial role in the characterization of soft-glassy materials, such as emulsions and foams. Based on numerical simulations of soft-glassy systems, we study the dynamics of plastic rearrangements at the hydrodynamic scales where thermal fluctuations can be neglected. Plastic rearrangements require an energy input, which can be either provided by external sources, or made available through time evolution in the coarsening dynamics, in which the total interfacial area decreases as a consequence of the slow evolution of the dispersed phase from smaller to large droplets/bubbles. We first demonstrate that our hydrodynamic model can quantitatively reproduce such coarsening dynamics. Then, considering periodically oscillating strains, we characterize the number of plastic rearrangements as a function of the external energy-supply, and show that they can be regarded as activated processes induced by a suitable "noise" effect. Here we use the word noise in a broad sense, referring to the internal non-equilibrium dynamics triggered by spatial random heterogeneities and coarsening. Finally, by exploring the interplay between the internal characteristic time-scale of the coarsening dynamics and the external time-scale associated with the imposed oscillating strain, we show that the system exhibits the phenomenon of stochastic resonance, thereby providing further credit to the mechanical activation scenario.
منابع مشابه
Yield stress, heterogeneities and activated processes in soft glassy materials*
The rheological behaviour of soft glassy materials results essentially from the interplay between shearing forces and an intrinsic slow dynamics. This competition can be described by a microscopic theory, which can be viewed as a nonequilibrium schematic mode-coupling theory. This statistical mechanics approach to rheology results in a series of detailed theoretical predictions, some of which a...
متن کاملInternal stress drives slow glassy dynamics and quake-like behaviour in ionotropic pectin gels.
Frustrated, out-of-equilibrium materials have been of considerable interest for some time and continue to be some of the least understood materials. Recent measurements have shown that many gelled biopolymer materials display slow dynamics on timescales greater than one second, that are not accessible with typical methods, and are characteristic of glassy trapped systems. In this study we have ...
متن کاملShear-transformation-zone theory of linear glassy dynamics.
We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees ...
متن کاملSlow dynamics in glassy soft matter
Measuring, characterizing and modelling the slow dynamics of glassy soft matter is a great challenge, with an impact that ranges from industrial applications to fundamental issues in modern statistical physics, such as the glass transition and the description of out-of-equilibrium systems. Although our understanding of these phenomena is still far from complete, recent simulations and novel the...
متن کاملSlow dynamics, aging, and glassy rheology in soft and living matter
We explore the origins of slow dynamics, aging and glassy rheology in soft and living matter. Non-diffusive slow dynamics and aging in materials characterised by crowding of the constituents can be explained in terms of structural rearrangement or remodelling events that occur within the jammed state. In this context, we introduce the jamming phase diagram proposed by Liu and Nagel to understan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2015